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Abstract

Background: COVID-19 is an emergent infectious disease that has spread geographically to become a global
pandemic. While much research focuses on the epidemiological and virological aspects of COVID-19 transmission,
there remains an important gap in knowledge regarding the drivers of geographical diffusion between places, in
particular at the global scale. Here, we use quantile regression to model the roles of globalisation, human settlement
and population characteristics as socio-spatial determinants of reported COVID-19 diffusion over a six-week period in
March and April 2020. Our exploratory analysis is based on reported COVID-19 data published by Johns Hopkins
University which, despite its limitations, serves as the best repository of reported COVID-19 cases across nations.

Results: The quantile regression model suggests that globalisation, settlement, and population characteristics related
to high human mobility and interaction predict reported disease diffusion. Human development level (HDI) and total
population predict COVID-19 diffusion in countries with a high number of total reported cases (per million) whereas
larger household size, older populations, and globalisation tied to human interaction predict COVID-19 diffusion in
countries with a low number of total reported cases (per million). Population density, and population characteristics
such as total population, older populations, and household size are strong predictors in early weeks but have a muted
impact over time on reported COVID-19 diffusion. In contrast, the impacts of interpersonal and trade globalisation are
enhanced over time, indicating that human mobility may best explain sustained disease diffusion.

Conclusions: Model results confirm that globalisation, settlement and population characteristics, and variables tied to
high human mobility lead to greater reported disease diffusion. These outcomes serve to inform suppression strategies,
particularly as they are related to anticipated relocation diffusion from more- to less-developed countries and regions,
and hierarchical diffusion from countries with higher population and density. It is likely that many of these processes
are replicated at smaller geographical scales both within countries and within regions. Epidemiological strategies must
therefore be tailored according to human mobility patterns, as well as countries’ settlement and population
characteristics. We suggest that limiting human mobility to the greatest extent practical will best restrain COVID-19
diffusion, which in the absence of widespread vaccination may be one of the best lines of epidemiological defense.
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Introduction
The Coronavirus disease (COVID-19) has spread more
globally and rapidly than previous outbreaks (e.g., the
1918 Spanish Influenza pandemic and the 2003 SARS
epidemic) [1], which suggests that rising international
connectivity [2, 3] and urbanisation [4, 5] have played a
key role in its diffusion between and within territories. In
the pandemic’s early stages, countries with high numbers
of reported cases (e.g. Italy, Spain, the United Kingdom
and the United States) and high numbers of reported
cases per capita (e.g. Qatar, Luxembourg, Panama and
Bahrain) have been highly globalised nations with high
levels of urbanisation and human mobility, whilst those
with fewer cases are mostly less globalised, with smaller
numbers of visitors, lower rates of urbanisation, and in
general less domestic mobility [6]. This observation
holds true at the national scale as well, in that major
outbreaks of COVID-19 were reported in the pandemic’s
early stages in countries’ densest, and often most global-
ized and affluent, regions. For example, Lombardia
(Italy) [7, 8], New York (the United States) [9], Madrid
(Spain) [10], and Tehran (Iran) [11] all by far outnum-
bered cases in other regions within their respective
countries in the first few months of 2020.
This exploratory study seeks to test the role played by

globalisation, settlement and population characteristics
to explain the spatial diffusion of reported COVID-19
cases at a global scale in the early stages of the pan-
demic. Widely understood to have diffused geographic-
ally from a single point of origin in China in late
December 2019 [12, 13], spatial diffusion across country
borders was at first relatively slow. It took 45 days for
the virus to spread to 30 countries, areas or territories
[14]. After this time, geographical diffusion accelerated
and within the next 45 days, COVID-19 would reach
nearly all global territories [14]. By April 8th 2020 – the
final week in this study – there had been 20,277,716
reported cases recorded within the COVID-19 Data
Repository by the Center for Systems Science and
Engineering at Johns Hopkins University (JHU) [15].
Only 12 states and territories had purportedly remained
free of COVID-19 by the end of May 2020, including
10 small and isolated Pacific island states, and two coun-
tries relatively closed to outside influence: Turkmenistan
and North Korea [16].
Despite extensive epidemiological research and

mathematical modelling of the COVID-19 transmission
[7, 17–22], there has been a lacuna of work aiming to
understand how social and geographic factors converge
to explain COVID-19 diffusion on a global scale. In this
exploratory paper, we redress this deficit though empiric-
ally demonstrating how globalisation, and the human
settlement and population characteristics of countries ex-
plain the spatio-temporal diffusion patterns of reported

COVID-19 cases, and how this relationship shifted early
on in the pandemic (Weeks 10–15), when travel restric-
tions were still relatively incipient yet viral transmission
began to globalise rapidly.

Background
Infectious diseases diffuse over space and time
through inherently geographical processes [23]. The
geographical concept of spatial diffusion is defined as
the spread of a phenomenon across space [24], of
which disease diffusion through interpersonal trans-
mission is but one variant [23, 25]. Here, we investi-
gate the role of globalisation, settlement and
population characteristics as socio-spatial determi-
nants of reported COVID-19 diffusion between coun-
tries as an outcome of transmission between
individuals. Although each new case is by definition a
product of interpersonal transmission—both directly
via contact, and indirectly via fomites—diffusion can
occur across large distances as an outcome of human
movement and mobility. Understandings of viral
transmission lie more firmly within the academic do-
main of virology than diffusion does, which is a fun-
damentally geographic phenomenon that can be
applied to many other forms of spread (for example,
innovation diffusion [24]). Different underlying pro-
cesses characterise types of spatial diffusion [26, 27].
Expansion diffusion identifies the general tendency for
phenomena to spread ‘outward’, and infectious dis-
eases are most associated with contagious (expansion)
diffusion, indicating direct transmission between
neighbours due to their physical proximity.
As infectious diseases spread through the global popu-

lation, different types of diffusion come into play, often
in combination [25, 27]. Disease spread that occurs over
a large distance from its origin is captured by relocation
diffusion, which is often mobilised by air travel or other
modes of extra-local transportation. On a global scale,
mobility and connectivity between countries collectively
contribute to disease outbreaks across the globe, an
observation brought forward by previous research on
human rhinovirus, influenza, and SARS [28, 29]. Indeed,
globalisation in its diverse forms is diminishing the role
of physical (Euclidian) distance in diffusion. Though
disease vectors require human contact, the speed and
ubiquity of global transportation and travel have led to
time-space compression [2, 30], which reduces the time-
distance required to connect any two global points.
In recent studies [31, 32], globalisation has been shown

to be positively linked to the reported numbers of COVID-
19 cases in that more globalised countries experience
higher exposure to outbreaks [32, 33], as do ‘global cities’
within countries [4]. On a global scale, Sirkeci and Yüceşa-
hin [34] suggest that the spread of COVID-19 in March
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2020 followed a relocation diffusion pattern, while Kue-
bart and Stabler [35] observe relocation diffusion of
COVID-19 in Germany based on existing interpersonal
networks. Internationally, globalisation supports reloca-
tion diffusion, as public health studies have repeatedly ac-
knowledged [22, 36]. COVID-19 has rapidly spread via
international air [37, 38] and sea [39] travel connecting
countries with high levels of tourism and trade [40]. An-
other study [31] found that almost all KOF (Swiss Eco-
nomic Institute) globalisation sub-indices [41] exhibit a
robust, positive association with the number of COVID-
19 reported cases, with social globalisation—which proxies
migration and civil rights among other measures—being
the most important predictor both in magnitude and stat-
istical significance.
Another mode of spatial diffusion is through hierarch-

ical diffusion, which characterises spread from large
settlements to smaller ones, or from more internation-
ally significant cities (e.g. ‘global city-regions’) to those
less significant. In the case of infectious diseases,
previous research suggests that large metropolitan areas
experience greater spread due to the larger number of
people, their closer proximity and increased movement
[5, 29, 42–44]. Fortaleza et al. [45] observed hierarchical
diffusion of COVID-19 from the largest cities to smaller
settlements in Brazil. Similarly, Sirkeci and Yüceşahin
[34] observe hierarchical diffusion of COVID-19 infec-
tion in countries including the United States, the United
Kingdom, South Korea and Italy among others.
Certain settlement characteristics are associated with

hierarchical diffusion, including the level of urbanisation,
density and accessibility. Larger and denser cities have
been shown to increase vulnerability to infectious dis-
ease spread [46] by creating the requisite preconditions
for higher numbers of human interactions wherein
higher densities act to increase the intensity of such
interactions [47]. Andersen et al. [48] find that urbanisa-
tion is a significant predictor of COVID-19 transmission
within the United States, while Carozzi [49] finds urban
density to be a predictor.
Additionally, there are marked differences in popula-

tion characteristics—population size, development levels,
household size and age structure— affecting the spread
of an infectious disease [38, 50]. We examine this using
four population characteristics of individual countries:
Human Development Index (HDI); population aged over
65; mean household size; and national population size.
These variables have been included to control and build
upon recently published findings that can explain the rates
of COVID-19 outbreak at the early stages [9, 34, 51].

Data
We employ quantile regression [52, 53] to examine how
globalisation, settlement characteristics and population

characteristics impact the cumulative total of reported
COVID-19 cases per one million inhabitants over a
six-week period from the 10th week (ending March
4th) until the 15th week of 2020 (ending April 8th).
Figure 1 shows the distribution of cases over the
study period.
The study period was chosen based on its relation to

the variables applied to explain reported COVID-19 dif-
fusion. Prior to the first week of March 2020, there were
insufficient data points to study the disease on a global
scale. Data collection accelerated with the number of re-
ported cases when COVID-19 was declared a global
pandemic by the World Health Organisation (WHO) on
March 11th 2020 [54], just over 2 months after its out-
break. During the six-week period of the study period,
the number of reported cases increased by 1433% and
the number of countries and territories affected more
than doubled, counting those enumerated within the
Johns Hopkins University (JHU) repository [15] as
extracted on May 13th 2020.
The JHU dataset remains the most globally-

representative data available. Such global near real-time
data were not available to scholars studying previous
epidemics, with empirical studies concerned largely with
the disease diffusion at the national scale. However, de-
velopers of this database recognise that drawing data
from this, and similar global repositories, is not without
caveats [55]. Among these, previous research and com-
mentary have identified the ambiguity of definitions and
reporting frequencies; discrepancies in reporting across
sources and countries; data inconsistency and complete-
ness [56]; and intentional misreporting [57]. For ex-
ample, it has been suggested that at the end of March
2020, the average detection rate of COVID-19 was 6 %,
increasing to 9 % 2 weeks later [56]. Though a register
within the GitHub repository contains more than a
thousand items associated with how JHU data are
collected and reported [58], Stokes et al. [59] report that
the JHU data are consistent with CDC data in the
United States, and “still stands as the authoritative
source of global COVID-19 epidemiological data”, ac-
cording to Gardner et al. [60]. We align with published
studies that use the JHU database [61–65], yet share the
proviso that these reported COVID-19 cases are the best
proxy for the true infection rate given that an unknown
number of cases remain undetected. We return to a
number of potential implications for our findings in the
Discussion section.
Over the six-week study period, the number of re-

ported COVID-19 cases spread globally to incorporate
an increasing number of countries and cases. Figures 2
and 3 show the geographical (Fig. 2) and temporal diffu-
sion (Fig. 3) of reported COVID-19 cases between
February 27th and April 8th 2020.
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The dependent variable in the quantile regression
model is the number of cumulative total of reported
COVID-19 cases per one million inhabitants (log-
transformed) by country (or territory) and by week.
The denominator for the dependent variable is the
2019 mid-year population by country drawn from the
United Nations World Population Prospects [66].
Eighty-four countries had consistent available data for
the duration of the study period and were therefore
included in the model.
The choice of quantile regression allows us to go be-

yond the mean relationship between the response and
the predictor variables to reveal statistical relationships
at specific points along the distribution [52, 53, 67, 68].
In this way, we detail our discussion on how the impacts
of globalisation, settlement characteristics and popula-
tion characteristics on the global diffusion of reported
COVID-19 cases vary across the distribution. In con-
trast, a mean model approach would explain how these
impacts occur in general thus potentially failing to

capture impacts towards the ends of the pandemic
spectrum.
Although mean regression models are highly sensitive

to outliers, different quantile estimations can also be in-
fluenced by outliers at different locations [69, 70]. For
example at the 50th quantile in the last 3 weeks of the
study, China, Iran and Japan stand out as influential ob-
servations which might have overly impacted the signifi-
cance of each variable.
The quantile model includes a total of 11 independent

variables to explain reported COVID-19 cases per one
million inhabitants (log-transformed) by country (or ter-
ritory) by week. To understand the role of globalisation
in COVID-19 diffusion, we include three variables from
the KOF globalisation index [41, 71, 72]: de facto inter-
personal globalisation, de facto financial globalisation
and de facto trade globalisation to represent globalisa-
tion. These sub-indices proxy migration, tourism and
business flows, which are known to be positively associ-
ated with outbreaks of infectious diseases by exposing

Fig. 1 Distributions of cumulative reported COVID-19 cases per million population (log transformed). Graphs show the 10th week (ending March
4th) until the 15th week (ending April 8th) of 2020. The red line indicates the mean and the black lines quantiles
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countries to the outside world [31, 32, 36, 43, 73–75].
Globalisation variable 1 is de facto interpersonal global-
isation, which is a KOF sub-index of social globalisation
that includes indicators of international traffic, transfers,
international tourism, international students and migra-
tion [41]. An early study of the COVID-19 spatial diffu-
sion [34] shows that the volume of migration flows has
been a strong indicator for the international spread of
the pandemic. Globalisation variable 2 is de facto trade
globalisation, another KOF sub-index of economic
globalisation that reflects trade in goods and services
as well as trade partner diversity [41]. Globalisation
variable 3 is de facto financial globalisation, a KOF
sub-index of economic globalisation. It is comprised
of measures of foreign direct investment, portfolio

investment, international debt, international reserves,
and international income payments [41].
To understand the role of settlement characteristics in

reported COVID-19 diffusion, we include four variables
that measure various national-scale dimensions of settle-
ment characteristics: urbanisation rate; population dens-
ity; maximum urban population density; and areal
accessibility (measures the average drive time of the na-
tional population from smaller to larger settlements)
[76]. These operationalise human interaction within na-
tional boundaries, with recent publications suggesting
that diffusion happens more rapidly in cities that are
dense, well-connected, and accessible [4, 5, 34, 46, 47].
Settlement variable 1 is urbanisation rate, defined as the
proportion of a national population located in cities or

Fig. 2 Choropleth map of reported cases of COVID 19 per million population for the 84 countries included in the analysis over weeks 10 to 15
(ending March 4th and April 8th 2020, respectively)
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metropolitan regions (national definitions vary). We
selected this variable as cities are more prone to early
disease diffusion than rural areas due to higher con-
centration of interaction and movement in urban
areas [5], and documented higher sensitivity of large
cities to the spread of infectious diseases [4, 29, 77].
Settlement variable 2 is population density, defined as
the population per square kilometer across a national
territory. Population density proxies the higher intensity
of human interaction which makes disease transmission
more likely. The literature shows that population density

has a high impact on the outbreak of infectious diseases
[47]. While a previous study [34] did not detect a relation-
ship between population density and total reported
COVID-19 cases, there is a broader literature that sug-
gests an association between population density and the
outbreak of infectious diseases [47].
Settlement Variable 3 is urban density [maximum], de-

fined as the population per square kilometer of the dens-
est city in a country. This variable has been selected as a
proxy for the level of density exhibited in a country’s
main urban areas, compensating for the fact that many

Fig. 3 Diffusion of reported COVID-19 cases per million population (log transformed) over weeks 10–15 (ending 4th March and April 8th 2020,
respectively) across 84 countries
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countries with relatively low levels of urbanisation at a
national scale (e.g. Pakistan, Bangladesh) in fact have
some of the world’s highest urban densities within their
cities. Settlement Variable 4 is areal accessibility, defined
as an area-weighted average of driving time to locations
with at least 1500 inhabitants per square km [76]. This
variable has been selected based on a previous study [46]
in which the authors argue that extended urbanisation
may result in increased vulnerability to an infectious
disease spread. Urban accessibility captures the varia-
tions in suburbanisation and peri-urbanisation across
countries.
To understand the role of national population charac-

teristics in reported COVID-19 diffusion, we employ:
HDI; population age structure (65+); median household
size; and population size. Research suggests that
COVID-19 is more likely to spread in more-developed
countries with higher levels of international migration
than in countries with lower levels of development and
migration [31], at least in early stages. Affluent, healthy,
and educated populations (HDI) are more likely to be
highly mobile. Although larger household sizes and
national populations are associated with increased
reporting of COVID-19 cases, these are not clear-cut re-
lationships [9]. Older populations, or populations with
higher mortality rates, are more likely to get tested than
younger populations that may be asymptomatic [51, 78].
Population variable 1 is HDI (Human Development
Index), which captures a holistic picture of individual
countries and has been used as an indicator of the
macro environment in a previous study [34] written in
the early period of the pandemic. The study found that
each unit increase in the HDI score is associated with
five more reported COVID-19 cases. Populations in
countries with higher HDI are more affluent, healthier,
and better educated, meaning that their overall mobility
potential would be higher. Population variable 2 is popu-
lation aged 65 and over (%), which is the proportion of
the population aged 65 years and over. We hypothesise
that in early stages of the pandemic, case detection is
higher in countries with older populations due to the
higher burden of mortality among older adults [51].
COVID-19 transmission may remain undetected longer
in younger populations [78]. Population variable 3 is
household size (mean) is the average number of people
per dwelling. Individuals in larger households interact
with more people including once stay-home measures
are applied. For example, analysis of demographic and
socioeconomic determinants of COVID-19 testing in
New York shows a very strong correlation between
infection rate and household size [9]. Population variable
4 is population (n), which is a demographic variable with
a direct relation to the pool size for the potentially in-
fected population. Population size was considered as a

moderating variable in a previous study [34] that found
that “a one person increase in population size indicates
over 1.6 more COVID-19 cases” (p. 385) thus more
populous countries have greater potential for exposure.
Even when normalised on a per capita basis, the likeli-
hood of new cases is still higher in large countries than
in small countries. Table 1 lists the variables in the
model, with the source, units and year of each.
The table below (Table 2) provides summary statistics

of the dependent variables by week, as well as independ-
ent variables on globalisation, settlement characteristics
and population data.

Results
Globalisation, settlement characteristics and population
characteristics all influence reported COVID-19
diffusion, but do so differently at varied points along the
distribution as well as differently across time. Figure 4
visualises the standardised relationship of each factor
with the number of (log-transformed) reported cases per
million at the 25th, 50th, 75th and 90th quantiles for
each of week of the 6 week period.
In the early stages (Weeks 10, 11), population charac-

teristics were the most influential variables in explaining
reported COVID-19 diffusion. HDI was found to be the
most influential significant variable affecting reported
COVID-19 diffusion, particularly in countries with a
high number of new cases per capita (75th and 90th
quantiles) and within the earlier weeks (supporting earl-
ier findings [34]), decreasing in importance over time.
Aged population (65+) is significant only in early weeks
at the 25th and 50th quantiles, but strong collinearity
with HDI suggests these are related in causality (See
Additional file 7). Both HDI and Population aged 65+
tend toward zero in later weeks, indicating declining im-
pact as time goes on. Population size and household size
are both positively associated in earlier weeks, which di-
minishes in later weeks. Population size is significant at
the 75th quantile whereas household size is significant
throughout the 25th, 50th and 75th quantiles. Popula-
tion characteristics generally had a declining impact on
reported COVID-19 diffusion as the weeks went on.
Settlement characteristics had mixed impacts on re-

ported COVID-19 diffusion. Population density initially
(Week 10) had a strong positive influence at the mean,
and at the 25th, 50th, and 75th quantiles that waned with
time. Maximum urban density exerts negative influence
on reported COVID-19 diffusion throughout the distribu-
tion, but is strongest at the mean and only significant in
the first week of our study. Again, early reported COVID-
19 diffusion is tied to density, but the influence of a single
(or multiple) densely populated settlements has declining
impact over time. In contrast, areal accessibility is nega-
tively associated with reported COVID-19 diffusion in
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later weeks but only at the 90th quantile, indicating
its effect is significant in countries with a high num-
ber of new cases per million. A negative relationship
suggests that the highest number of total cases are
associated with greater access to cities, and that as

this is reduced, so are the number of reported cases
per million. With the exception of urbanisation,
settlement characteristics generally had a generally de-
clining impact on reported COVID-19 diffusion as the
weeks went on.

Table 1 List of independent variables to explain the diffusion of reported COVID-19 cases

Variable
Description

Category Units (Transformation) Source Year

Interpersonal
Globalisation

Globalisation Index Value (100 Point Scale) Swiss Economic Institute (KOF) 2019

Trade
Globalisation

Globalisation Index Value (100 Point Scale) Swiss Economic Institute (KOF) 2019

Financial
Globalisation

Globalisation Index Value (100 Point Scale) Swiss Economic Institute (KOF) 2019

Urbanisation
Rate

Settlement National (Percent) World Bank 2018

Population
Density

Settlement Log transformed value of Inhabitants per square kilometer World Bank 2018

Urban Density Settlement Inhabitants per square kilometer in Densest Metropolitan Area Demographia 2020

Areal
Accessibility

Settlement The area-weighted average for driving time to a location with
at least 1500 inhabitants per square kilometer

Weiss et al. (2018) 2018

Human
Development

Population Index Value United Nations Development Programme 2018

Population aged
65 and over

Population Percent Age 65+ United Nations, Department of Economic
and Social Affairs Population Division

2019

Household Size Population Mean Number of Household Members United Nations, Department of Economic
and Social Affairs Population Division

2019

Population Population Total population United Nations 2019

Table 2 Descriptive Summary of Variables

Variable Median Mean St. Dev. Min Max

Reported cases (per million) by March 4th[log] 0.71 0.83 1.10 −1.29 3.25

Reported cases (per million) by March 11th [log] 1.59 1.60 1.00 −0.83 3.52

Reported cases (per million) by March 18th [log] 2.28 2.23 0.91 −0.01 3.97

Reported cases (per million) by March 25th [log] 2.77 2.69 0.88 0.50 4.29

Reported cases (per million) by April 1st [log] 3.15 3.04 0.86 0.70 4.53

Reported cases (per million) by April 8th [log] 3.38 3.32 0.83 0.89 4.76

Interpersonal Globalisation [index] 68.50 64.80 20.70 22.70 96.50

Trade Globalisation [index] 62.80 57.80 21.50 21.20 99.20

Financial Globalisation [index] 72.70 69.20 19.10 21.30 97.30

Urbanisation [rate] 72.00 68.60 19.60 18.50 100.00

Population Density [log] 1.97 1.95 0.57 0.31 3.90

Urban Density [maximum] 5650 7686 6251 1300 41,000

Areal Accessibility [mean] 111 158 116 30 577

Human Development [index] 0.80 0.79 0.12 0.43 0.95

Aged over 65 [%] 11.00 11.40 6.70 1.09 27.60

Population [million] 18 76 219 1 1432

Household Size [mean] 3.36 3.78 1.16 2.05 8.66
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Globalisation has the weakest effect of the three clas-
ses of variables, and its effects are mixed both in terms
of which portion of the distribution is impacted and the
type of globalisation. However, in contrast to the other
sets of variables, globalisation had an enhanced (rather
than muted) impact on reported COVID-19 diffusion
over time (i.e. as the weeks went on).
Interpersonal globalisation has a weak positive effect

at the mean and 25th quantile, particularly in early
weeks. While financial globalisation was not a reliable
predictor, it interacted with interpersonal globalisation
towards the start of the study period at both tails of the
distribution. Trade globalisation is the most prominent
in scaled terms and given that it explains suppressed re-
ported COVID-19 diffusion, suggesting that countries
with strong import and export ties are better placed to
slow the spread following the closure of borders.
Greater significance in terms of which globalisation

and settlement characteristics explain diffusion was
added through two interaction terms, added based on

goodness-of-fit. The globalisation interaction term is be-
tween de facto financial globalisation and de facto inter-
personal globalisation. This interaction term takes into
account the combined effect of international travel and
the level of financial globalisation. This interaction effect
is significant and positive, particularly throughout the
lower quantiles and in the early weeks. This is to say
that countries with a low number of reported COVID-
19 cases per million are likely to receive new cases if
conditions of both high financial globalisation and inter-
personal globalisation are met, generally both related to
intensity of human mobility flows.
The settlement interaction term is between urban

density of the largest city of the country and the (lack
of) accessibility of smaller settlements. This interaction
term accounts for the hierarchical connectivity between
settlements of different sizes within the country and thus
it proxies primacy, as many countries are poorly
connected overall but have large and dense capital or
primate cities. This interaction yields a mostly positive

Fig. 4 Standardised coefficient value of reported COVID-19 cases at the 25th, 50th, 75th and 90th quantiles the 10th week (ending March 4th)
until the 15th week of 2020 (ending April 8th)
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effect (up to the 75th quantile), and is significant and
positive in the distribution in the final week of the
analysis.

Discussion
With the rollout of COVID-19 vaccines still underway
on a global scale, the disease continues to be a major
detriment to human health. Of the variables examined
in our diffusion model, population and settlement char-
acteristics influence new reported COVID-19 cases per
one million inhabitants in early weeks while globalisa-
tion variables influence new reported COVID-19 cases
per one million inhabitants in later weeks. Notably,
among countries with a high number of early reported
cases, HDI is by far the strongest predictor of new cases.
HDI has a strong, albeit weakening, positive association
with reported COVID-19 diffusion across the 6 week
period, suggesting some level of hierarchical diffusion
from more developed countries to less developed coun-
tries, and relocation diffusion between more-developed
countries with high mobility (e.g. within Europe). How-
ever, this could also reflect relatively higher testing and/
or reporting levels in affluent countries. Alternatively,
there could be relatively larger numbers of asymptomatic
cases in less-developed countries on account of typically
younger population profiles. As such, we stress that any
research using globally aggregated data sets should be
interpreted with care.
Particularly in the early weeks, other population and

settlement characteristics such as population aged 65+,
household size, and population density explain diffusion,
but their effect declines in successive weeks. The lasting
impact of HDI, and the muted impacts of other popula-
tion and settlement characteristics, is perhaps best ex-
plained by COVID-19’s impacts on mobility. Although
more-developed countries may have been more success-
ful in implementing early lock-down measures, they also
had much higher overall levels of both international and
internal mobility, hence why settlement characteristics
play such an important role in the first week of the study
(Week 10) but not afterward.
While the impact of settlement and population charac-

teristics generally declines over time, globalisation shows
an increased importance in predicting reported COVID-
19 diffusion, through this has both negative (trade global-
isation) and positive (interpersonal globalisation) effects.
Of the globalisation variables, interpersonal globalisation
has the strongest effect, particularly when interacting with
the financial globalisation variable. This suggests that con-
tinued human mobility may be a critical determinant of
reported COVID-19 diffusion.
Conversely, trade globalisation has a negative impact,

and the impacts of all three globalisation types appear to
be stronger toward the latter weeks. The impact of

globalisation in later weeks is somewhat counterintuitive
if one expects more globalised countries to experience
rapid COVID-19 diffusion in earlier stages and other
countries to reach similar levels over time. It also reflects
the fact that the economies of more globalised countries
are tied to ‘openness’, with strong disincentives for shut-
ting borders and enforcing other ‘global’ restrictions. To
this end, trade globalisation is not associated with
human mobility as much as financial globalisation and
interpersonal globalisation, with the latter incorporating
both tourism and migration.

Conclusion
Globalisation, settlement characteristics and population
characteristics are all important in explaining reported
COVID-19 diffusion, but significant at different points
on the distribution and at different points in time. Popu-
lation and settlement characteristics were most influen-
tial in explaining COVID-19 diffusion in the weeks
surrounding the WHO declaring the global pandemic in
March 2020, but in subsequent weeks globalisation be-
came more important. This exploratory analysis suggests
that both hierarchical and relocation diffusion were re-
sponsible for reported disease spread, as more globalised
and developed countries (measured by HDI) spread
COVID-19 to less globalised and/or developed countries,
and that this process was accelerated early-on in coun-
tries with high urban density and accessibility.
The model reveals that urbanisation and density

generally exert a positive effect on disease diffusion
early-on, but that over time this impact tends toward
zero. Conversely, variants of globalisation exert diverse
effects, with trade globalisation exerting a negative effect
on reported COVID-19 diffusion that diverges from the
positive effects associated with financial and interper-
sonal globalisation. Our quantile regression modelling
approach highlights that impacts of settlement charac-
teristics are mixed but generally exert the greatest
impact towards the lower and higher quantiles, and par-
ticularly in the earlier weeks.
Our findings suggest that the impacts of non-local dif-

fusion outweigh the geographical effects of diffusion tied
to adjacency, at least early on in the pandemic. Although
both infectious and contagious diffusions are present
throughout the study period via interpersonal contact,
our results indicate that relocation diffusion precedes
hierarchical diffusion as the disease is first spread within
affluent and mobile countries, then carried across long
distances via global mobility, and later diffused within
countries from single or multiple points of entry, which
are typically the largest and/or most globalised cities.
Though this may seem self-evident, further research
should focus on the impacts and effects of policy on
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diffusion, which is likely to have had a strong impact
across the study period [79–81].
Perhaps the finding that more-developed countries ex-

perience higher disease diffusion before less-developed
countries may be perceived as auspicious, given that
countries with better governance, more economic wealth
and more advanced health care systems are better able
to cope with pandemic conditions. It may, however, re-
flect differences in reporting standards and/or testing
rates, which would be highest in affluent countries early-
on.
Our model finds clear evidence of diffusion: from

more-developed to less-developed; and to a lesser extent
from urbanised to non-urbanised. As COVID-19 is a
disease whose diffusion is reliant on interpersonal trans-
mission, we find that both relocation diffusion (tied to
global mobility) and hierarchical diffusion (tied to popu-
lation and settlement characteristics) are simultaneously
acting on countries.
To date, the primary mobility-focused public health

initiatives to curb disease diffusion have been travel bans
(border closures) and stay-home orders that restrict
gatherings. Both have shown clear effectiveness in
curbing disease diffusion [79, 81] as both Australia and
New Zealand all but vanquishing COVID-19 has proven
[82]. As disease diffusion progresses, implementing these
measures at increasingly small scales will be necessary as
restricting human mobility has proven the most effective
measure against the spread.
With vaccines on the horizon alongside increasing

impatience around ‘returning to normal’, the efficacy of
government mandates in many contexts comes into
question [83–86]. One consideration is to weigh the im-
plications of a curative (e.g. vaccines) versus preventative
(e.g. distancing, restricted mobility) approach to the
pandemic. To this end, as we know that globalisation
through interpersonal mobility is a contributor to dis-
ease spread, international and interregional travel may
be worth limiting, or arresting entirely if the latter ap-
proach is pursued. By the same token, spatial analysis
suggests that targeted epidemiological interventions may
be most effective, which may in fact combine strategies.
As our data have shown, certain settlement and popula-
tion characteristics create the preconditions for reported
COVID-19 diffusion, yet these are far more difficult to
modify (e.g. de-urbanisation, de-densification) than it is
to reduce globally high levels of mobility. Governments
must enlist the efforts of social scientists to better
understand how spatially targeted interventions can curb
disease diffusion, and by corollary transmission.

Methods
An Ordinary Least Squares regression (OLS; formula 1)
was repeated for each period (weeks 10 to 15). We

introduce two interaction terms - one at the global scale
and another at the local-scale. At the global scale, the
interaction term is between de facto financial and inter-
personal globalisation. Financial globalisation captures
direct foreign investment, international reserves, and
international income payments that induce movement of
skills and labour. Financially globalised nations are typic-
ally global centres of business and related services and
thus, generate global business travel and interaction. As
such, the interaction between financial and interpersonal
globalisation captures international travel related to
business. In contrast, we anticipate that the national-
scale interaction between maximum urban density (the
largest National City) and areal accessibility will have
growing importance in later weeks once national borders
close and thus COVID-19 exposure will typically occur
within national borders and at home. As such, this inter-
action represents the connectivity between the smaller
urban growth centres and the economic centre of the
country.

yi ¼ β0 þ β1x1 þ β2x2 þ…þ βnxn þ εn ð1Þ
where yn is the log-transformed rate of reported
COVID-19 cases, β0 is the y-intercept, βnxn are coeffi-
cients for the explanatory variables, and εn is the error
term.
Once the least parsimonious and collinear set of ex-

planatory variables was identified using an empirical
LASSO method that iterates through all combinations of
globalisation and national explanatory variables, quantile
regression was used to explain the global diffusion and
transmission of COVID-19 at specific points along the
distribution using these explanatory variables (see
Additional file 7). This regression revealed how the in-
fluences of log-transformed rate of reported COVID-19
cases vary across the quantiles of the distribution [87].
As such, this regression does not assume there is nor-
mality nor uniformity in how COVID-19 is diffused and
transmitted between and within countries. This regres-
sion revealed how the influences of log-transformed rate
of reported COVID-19 cases vary across the quantiles of
the distribution [87]. As such, this regression does not
assume there is normality nor uniformity in how
COVID-19 is diffused and transmitted between and
within countries. The τ were placed at the 25th, 50th,
75th, and 90th quartiles according to the conventions of
disease mapping [88–90]. Again the quantile regression
was iterated for each week using formula 2 [87]:

Qτ yijxið Þ ¼ β τð Þ
0 þ β τð Þ

1 x1 þ…þ β τð Þ
n xn þ ε τð Þ ð2Þ

where Qτ is a point estimate for yi given xi, and where τ
is specific quantiles (i.e. the 25th, 50th, 75th, and 90th),
yi is the log-transformed rate of reported COVID-19

Sigler et al. Globalization and Health           (2021) 17:56 Page 11 of 14



cases for country i and xi are explanatory variables. On
the explanatory-side of formula, βðτÞ0 are y-intercepts, βðτÞn
xn coefficients for the explanatory variables, and ε(τ) are
error terms for each quantile τ.
The output tables for these regression models are pro-

vided in Additional files 1, 2, 3, 4, 5 and 6. Lastly, the
specific R function used for modelling is quantreg::rq for
quantile regression.
Koenker and Machado (1999) suggest a goodness of

fit, R1 (τ) analogous to R-squared in simple linear regres-
sion and argues that R1 (τ) gives a local measure of
goodness of fit for a particular quantile rather than a
global measure of goodness of fit over the entire
conditional distribution [91]. The median (50th quantile)
is the point at which the model is weakest, suggesting
likewise that a mean model would have been a poor fit.
The model is strongest at the 25th and 90th quantiles,
indicating that the model is best fit to serve countries
with a low number of cases (these are mostly small
countries with low HDI) and the 90th is where most of
the existing cases are (generally larger countries with
high HDI). The quantile regression model is the best fit
in the first week, with progressively less significance and
explanatory power. This suggests that policy may be
most effective in early weeks, as known socio-spatial
conditions can be targeted through specific public
interventions.
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