Skip to main content

Table 1 MAE comparison of the different models with or without directional priors and dummies

From: Cross-border mobility responses to COVID-19 in Europe: new evidence from facebook data

 

Linear

KNN

G-Boost

MLP

Linear

KNN

G-Boost

MLP

 

Panel A: No dummies - No prior

Panel B: No dummies - Priors

avg MAE

0.194

0.018

0.073

0.051

0.201

0.019

0.042

0.057

std MAE

(0.009)

(0.001)

(0.001)

(0.005)

(0.005)

(0.001)

(0.001)

(0.003)

avg RMSE

0.285

0.042

0.106

0.083

0.287

0.043

0.064

0.089

std RMSE

(0.017)

(0.009)

(0.003)

(0.011)

(0.009)

(0.005)

(0.002)

(0.008)

 

Panel C: Dummies - No prior

Panel D: Dummies - Priors

avg MAE

0.135

0.020

0.050

0.041

0.134

0.020

0.049

0.038

std MAE

(0.005)

(0.001)

(0.002)

(0.003)

(0.005)

(0.001)

(0.001)

(0.003)

avg RMSE

0.210

0.045

0.081

0.068

0.203

0.047

0.077

0.064

std RMSE

(0.010)

(0.006)

(0.006)

(0.006)

(0.009)

(0.005)

(0.002)

(0.005)

  1. Note: The table compares the performances of the 4 different approaches (Linear, KNN, G-Boost and MLP) with and without directional priors (ωij,0), and with or without day/corridor dummies (dt and dij). Errors are computed from a 10-fold cross-validation on the whole sample